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The measurements in a highly curved mixing layer reported by Castro & Bradshaw 
(1976) are used to evaluate the performance of a calculation method based on the 
solution of modelled transport equations for the Reynolds stresses and the dissipation 
rate of turbulent energy. The model reproduces the suppression of turbulence by 
stabilizing curvature and, downstream of the curved region, where the flow returns 
asymptotically to being a plane mixing layer, calculated values of turbulent intensity 
and shear stress overshoot the plane-layer values in accordance with the experi- 
mental observations. The results are compared with those obtained by Townsend 
(1980) from a rapid-distortion model which correctly predicts the streamwise varia- 
tion of the shear stress to intensity ratio. By contrast, calculations based on a 
conventional two-equation eddy-viscosity model fail badly to account for curvature 
effects on this flow. 

1. Introduction 
As part of a general investigation of complex turbulent flows Castro & Bradshaw 

(1976) - referred to throughout this paper as CB - report extensive one-point measure- 
ments in a highly-curved mixing layer. The object of the experiment was ‘to document 
the effect of complicating influences so that some of the calculation methods which 
have proved satisfactory in simple shear layers can be extended with some confidence 
to complex flows’. In  the present paper we use these measurements to assess the 
performance of a calculation method based on the solution of modelled transport 
equations for the Reynolds stresses. 

The presence in curved shear layers of the ‘ complicating influences ’ referred to by 
CB has long been recognized, although they are not yet fully understood physically 
and their representation in calculation methods has been only partially successful. 
The principal observed effect of streamline curvature on a shear layer is to diminish 
the turbulent intensity and shear stress when the angular momentum of the mean- 
flow increases with increasing radius of curvature and to increase these quantities in 
the opposite situation. For a full discussion of these effects and a review of previous 
work the reader is referred to CB and to the comprehensive survey paper by Brad- 
shaw (1973). In  the present paper only the CB data are considered. Apart from some 
earlier, much less detailed, measurements reported by Wyngaard et al. (1968) they 
are the only results reported for afree curved shear layer. 
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FIGURE 1. Flow geometry and notation: all dimensions in centimetree. Fixed point P is near, 
but not at, centre of curvature: the latter varies with 8. (Reproduced from Csstro & B d h a w  
(1976) by permission of the authors and the Cambridge University Preas.) 

The configuration chosen by CB for their experiments is shown in figure 1 which is 
reproduced (by permission) from the original paper, The measurements were made in 
the mixing layer bounding a plane jet with an irrotational core impinging normally on 
a backplate set 44.7 cm from the nozzle. The flow can be thought of as half a two- 
dimensional impinging jet with a potential core and with the ‘floor’ replacing the 
symmetry plane. The sense of the curvature is stabilizing (i.e. turbulence is depressed 
in the mixing layer) and the ratio of shear-layer thickness to streamline radius of 
curvature reaches a maximum of about 0.2. Downstream of the impingement region 
the shear layer returns aaymptotically to being a classical plane mixing layer. The 
most spectacular feature of the measurements reported by CB is that the Reynolds 
stresses and other turbulent quantities, after decreasing as expected in the region of 
high stabilizing curvature, rise rapidly further downstream and overshoot the plane- 
layer values before finally decreasing. The results are considered by CB to ‘undermine 
many of the principles used in current calculation methods for shear layers, such as 
the automatic use of the shear-layer thickness to provide a length scale, the rotational 
invariance of turbulence models based on second-order transport equations, and the 
gradient diffusion hypothesis for turbulent transport ’. 

In  a recent paper by Townsend (1980) the rapid-distortion approximation is used 
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to predict the streaniwise variation of uV/$ in the CB flow. The author argues that, 
while the Reynolds-stress equations are exact, they can say very little about the flow 
patterns and in particular about the form and orientations of the energy-containing 
eddies. The curved mixing layer is cited as an example of unusual flow distortion for 
which Reynolds-stress methods will not give correct results because the distortion is 
considered to be so complex that its history over the lifetime of an eddy must be 
accounted for. We shall return to this point later to show that, in the CB flow, these 
effects do not preclude modelling in terms of the local strain rate. The observed 
behaviour of the structure parameter, Z/?, which Townsend uses to support his 
argument can, in fact, be ascribed directly to local changes in the extra strain due to 
curvature which are accounted for in the Reynolds-stress equation. In  its present 
form the rapid-distortion model sets out only to predict stress ratios and, if it  were to 
form part of a calculation scheme, another equation would be needed to determine 
intensities. Methods based on modelled transport equations for the Reynolds-stresses 
are capable of providing this information and the main purpose of the present study 
is to establish whether the applicability of such a method is in fact limited by the 
effects described by Townsend. 

Considerable progress has been made in developing ' Reynolds-stress models ' of 
turbulence, and numerous proposals for closing the set of transport equations have 
appeared in the literature. A method which gives good results for simple shear layers, 
and which has also been used successfully to calculate more complicated flows, is that 
developed by Launder, Reece & Rodi (1975) (afterwards cited as LRR) from earlier 
work by Hanjalic & Launder (1972). Two applications in particular may be cited here: 
the calculation of curved wall flows and of a curved free jet by Irwin & Smith (1975) 
and the prediction of the effects of buoyancy on shear-layer turbulence by Gibson & 
Launder (1976, 1978) where there is a well-known analogy with streamline curvature 
(Bradshaw 1969). In a study of curved wall flow Mellor (1975) has also shown that a 
different Reynolds-stress closure method accounts fairly well for the observed extinc- 
tion of shear stress by strong stabilizing curvature. Unfortunately, like Irwin & Smith, 
Mellor was unable to make very detailed comparisons with measurements of turbu- 
lence quantities and some of the more interesting features of the CB results did not 
appear in the wall-flow data used by these authors. The turbulence model developed 
by Launder and his collaborators forms the basis of the present study, although we 
have made use of later recommendations for the model constants. Its most important 
feature is the treatment of pressure-strain redistribution in the transport equations 
for the Reynolds stresses. The main contribution in the present work is the adaptation 
of this treatment so as to include the effects of extra strain due to streamline curvature, 
and a demonstration that many of the curvature effects observed by CB can be 
accounted for. 

The remainder of the paper consists of a brief description of the modelled Reynolds- 
stress equations for curved flow, the calculation procedure and a detailed comparison 
of the calculated results with the turbulence measurements reported by CB. The 
overall performance of the calculation method is assessed in a concluding section 
which also contains a brief discussion of the calculation method in relation to Town- 
sends (1  980) rapid-distortion model, 
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2. The turbulence model 
2.1. The Reynolds-stress equations 

The transport equations for Reynolds stress in a fairly thin, curved, shear layer are 
most conveniently expressed in the s-n co-ordinate system described by Bradshaw 
(1973) and used also by CB. The co-ordinates are shown in figure 1: s is distance 
measured along an arbitrarily chosen curved centreline with local radius of curvature 
R, and n is measured along straight lines normal to the centreline and toward the 
centre of curvature. The third co-ordinate, z, is measured along straight lines normal 
to the s-n plane. U ,  V and W are the components of mean velocity in the s, n and z 
directions and u, v and w the corresponding fluctuating components. As a consequence 
of these definitions R is negative throughout the flow and the Reynolds shear stress, 
UV, is generally positive. For constant R the system reduces to polar co-ordinates 
( r ,  8, x )  with r = n+R and 8 = SIR. 

The Reynolds number is assumed to be high enough for the fine-scale turbulent 
motion to be isotropic and viscous diffusion to be negligibly small. The turbulent- - .- - 
energy dissipation rate, 6, is then distributed equally among components u2, v2, w2 
and all the viscous terms disappear from the UV equation. With these assumptions 
the transport equations for the Reynolds stresses in a two-dimensional shear layer are: 

- n a V  -aV -U a - 
D t ( z 2 )  ) = -v2 1+- --uv-+2uv---((guv2) D 1 7  ( R)an as R as 

( 2 )  
- 

a -  
+w 1 7  ) = -- as (1uw 2 ) -”[ an (1 + ;)(q + - -- +€, 

P a.2 - -  
(3) 

The dominant terms in each equation are underlined. 
The left-hand sides of the equations represent transpxt by the mean flow where 

D 

The terms on the right-hand sides of (1)-(3) represent generation, turbulent transport, 
pressure-strain redistribution (in which p’ is the fluctuation in static pressure) and 
viscous dissipation. The equivalent terms appear in the shear-stress equation but 
there is negligible viscous dissipation of UV at high Reynolds number. 
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Summation of equations (1)-( 3) produces the transport equation for turbulent 
energy, @, given by CB: 

where the terms on the right represent production, turbulent transport (diffusion) 
and dissipation, 6. If only the underlined (dominant) terms are considered the pro- 
duction of @ is -Z[(l +n/R)aU/an - UIR] which has the form (turbulent shear 
stress) x (rate of strain of mean flow). In the case of a simple shear layer energy is 
generated from this source solely in the streamwise component 3. For a curved shear 
layer additional sources f ZCV UIR appear in the equations for 2 and 2. These have 
the form (shear stress) x (extra strain rate due to curvature) and have the effect of 
transferring energy from the cross-stream to the streamwise component when the 
sense of the curvature is stabilizing. 

The mean-flow transport and generation terms in (1)-(4) are expressed in terms of 
known quantities in a calculation scheme. Closure approximations are required for 
the turbulent transport and pressure-strain redistribution terms. It is then possible 
to solve the stress equations (1)-(4) numerically together with the momentum and 
continuity equations of the mean flow and a modelled transport equation for the 
dissipation rate E .  

2.2. Treatment of the pressure-strain correlations 

It is now generally accepted that, as first pointed out by Rotta (1951), the pressure- 
strain redistribution terms in the Reynolds-stress equations consist o f  (a)  turbulence 
interactions tending to equalize the turbulent energy in each component and ( b )  
interactions of the turbulence field with the strain rate of the mean flow. These inter- 
actions are modelled by the following simple expression, 'Model 2'  in LRR, written 
in Cartesian tensor notation for brevity: 

n<j, 1 %, 2 

where 4, and P are the rates of production of uii5 and @ respectively and the co- 
efficients C, and 0, are supposed constants in high-Reynolds-number turbulence. 

The term q,,, represents the turbulence contribution to pressure strain and is due 
to Rotta (1951). It is based on the hypothesis that in flows with negligible mean strain 
the rate of return of anisotropic turbulence to isotropy is proportional to the level of 
anisotropy. The characteristic decay time is taken here as @/e. The second term, 
ntj,z, which accounts for the mean-strain effects, waa proposed by Naot et al. (1970) 
as a replacement for Rotta's expression, and by Reynolds (1970). LRR identified this 
term aa the dominant one in a more general expreaaion and combined it with q,,, as 
in (6) to obtain good results for a number of simple, free, shear layers. Additional 
support for the use of (6) is provided by the recent study by Leslie (1980) of homo- 
geneous shear flow which shows that this relatively simple treatment of pressure 
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strain produces better results for this type of flow than does the more elaborate 
'Model 1' of LRR. 

Strictly speaking the mean-strain component nij,, depends not only on the local 
rate of strain as it is modelled in (6) but on the entire strain field about the point 
considered. However for the error involved in this approximation to be significant 
the strain would have to be so non-homogeneous as to vary significantly over distances 
comparable with the integral scale of the turbulence. If this is taken as O.l(@/c (where 
the coefficient 0.1 is chosen (Rotta 1951) so that the scale corresponds to that of the 
lateral velocity correlation in isotropic turbulence) the data show a variation of 
roughly 0.02 times the streamwise distance s. The variation of the extra strain U/r  
associated with curvature nowhere exceeds 5 % over this length. Following Rotta 
(1951) the error introduced in the model for n,,, by assuming the strain to be homo- 
geneous may be estimated by expressing the strain field in terms of a Taylor-series 
expansion about the point considered. For homogeneous turbulence the first term 
containing the streamwise variation of extra strain is the second derivative a,( U/r)/@.  
Using Rotta's relations, strictly valid only for isotropic turbulence, the maximum 
error arising from the neglect of this contribution, which occurs at the point of maxi- 
mum curvature, is estimated as less than 2 %. The use of a local strain in (6) would 
therefore appear to be justified for this flow. It is also worth noting that for weak 
homogeneous distortion of turbulence which is initially isotropic the expression (6) 
for rj5,, is identical to the result obtained from the rapid-distortion theory when, as 
here, the coefficient C ,  is set equal to 0.6. 

In  adapting (6) to curved flow, no distinction has been drawn between mean-shear 
production and that due to extra strain or rotation of the axes. Thus, in the $2 equa- 
tion (1), P,, is taken as the total production rate - iZ[( l + n/R)aU/an+ U / R ]  which 
has the form (shear stress) x (vorticity of mean flow), and the shear-stress production 
term P12 includes 2 ( 2  - 2) U/R.  Only the principal (underlined) production terms are 
used in modelling the pressure strain to give the expressions which are set out in full 
in table 1. 

The model constants C ,  and C,  are assigned values recently recommended by 
Gibson & Launder (1978). C ,  takes the value 0.6, as in LRR, required to satisfy (6) 
for the case of isotropic turbulence subjected to sudden distortion. C, is set equal to 
1-8 (instead of 1.6 in LRR or 2.5 in Hanjalic & Launder (1972))t to improve the 
dicted level of shear stress in plane free shear flow. 

2.3. The remaining closure approximations 

Turbulent transport of Reynolds stress is approximated by the simple gradient- 
diffusion hypothesis for the triple correlations due, originally, to Daly & Harlow 
(1970) and written here, for brevity, in Cartesian-tensor notation: 

Equation (7) is not compatible in its symmetry properties since only the left-hand side 
is independent of the order of the indices i ,  j and k .  However, LRR found that it 
produced satisfactory results for most free shear flows and that the results given by a 

t It should be noted that these two values were initially chosen to suit different pressure- 
strain models. 
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rotationally-invariant form were not supported by the experimental evidence. 
Lumley (1980) has suggested that this might be due to the absorption in (7) of some 
pressure diffusion which is not symmetrical and which is not modelled explicitly. It 
will be seen later that (7) underestimates turbulent transport of Reynolds stress in a 
plane-mixing layer and that the behaviour observed by CB in the curved flow is SO 

complicated that it cannot possibly be described by such a simple relationship. 
Nevertheless we have preferred to retain this formulation, with the value of C, which 
gives the best results for a number of different flows, rather than to introduce ad hoc 
modifications for curvature at this stage. The coefficient C, is set equal to 0.22t and 
the effects of curvature are expressed indirectly through changes in the stress levels, 
and particularly that of 3, since for the shear layer where cross-stream transport 
predominates, (7) reduces to: - -  

The triple-correlation terms explicitly associated with curvature are omitted at 
this level of approximation and are, in any case, found by Castro (1973) to be very 
small. 

The turbulent-energy dissipation rate, E ,  is obtained from the model transport 
equation used by LRR. The high Reynolds-number form for curved flow is expressed 
in 8-n co-ordinates as 

Turbulent transport of 8 is here approximated by an expression similar in form 
to (8). The rates of generation and destruction of e are assumed individually to be 
proportional to those of turbulent energy so that curvature effects appear through 
the definition of P: 

The coefficients C,, Ce,, C,, are taken as 0.18, 1.46 and 1.90 as recommended by 
Launder k Morse (1979). These values differ slightly from the original recommenda- 
tions of LRR (0.15, 1-44, 1.90) but have been preferred simply because they are the 
result of later work. 

It may be of interest at this stage to note briefly the implications of rapid-distortion 
theory in relation to the terms in the Reynolds-stress equations. The rapid-distortion 
theory reviewed by Hunt ( 1978) neglects gradients of the triple velocity correlation 
(turbulent diffusion), the turbulence contribution to pressure strain, 7 ~ ~ ~ , ~ ,  and usually 
also the energy dissipation rate. The mean-strain part of the pressure-strain correla- 
tion, niJ,2, and pressure diffusion are calculated directly from linearized versions of 
the equations of motion, As noted above, the present model for 7r6j,2 is consistent with 
the result of rapid-distortion theory for isotropic turbulence subjected to sudden 
distortion. 

t Launder & Morse (1979) note that the value 0.25 in LRR was published in error for 0-21. 
The value 0.22, and the remaining model constants of this section, have been arrived at by Morse 
(1979) from a later independent optimimtion stiidy. 
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3. Calculation method 
The modelled transport equations of the previous section are solved simultaneously 

with the momentum and continuity equations of the mean flow. For this to be done 
with reasonable economy of computer time a ‘marching’ solution is preferred to the 
complete ‘elliptic ’ solution for which CB proyide explicit boundary conditions. 
Consequently the curvature of the mixing layer is supplied as an input to the calcu- 
lations and is not predicted. This restriction is quite acceptable since the sole objective 
of the study is to assess the performance of the turbulence model and the calculation 
of the flow field referred to fixed co-ordinate axes is irrelevant. 

The s-direction momentum equation is (Bradshaw 1973) 

(11) 
D ~ J  iap uv n a G  uli au2 
Dt pas R [ 1 + ii] an- 2% - [TI , -- - - - - - - - 

in which the viscous diffusion terms have been omitted for high-Reynolds-number 
flow. The normal-stress gradient, shown in square brackets in (11) for completeness, 
is also not retained in the calculations. The neglected term has negligible influence on 
the development of the plane-mixing layer (it is ignored in the conventional thin- 
shear-layer approximation) and in the curved layer the pressure term dominates so 
that the net effect of the normal stress gradient on the total pressure on a given 
streamline is small. The continuity equation is 

”+”[(1+;)v] as an = 0 

and the equation set is completed by an abbreviated form (in which normal stress 
gradients are again omitted) of the n-direction momentum equation: 

Here again the Reynolds-stress gradients which would appear in the complete 
expression are dominated by the cross-stream pressure gradient so that this simple 
form adequately describes the pressure and mean-velocity fields (figures 1 and 2). 

The radius of curvature, R, of the shear-flow centreline defined by CB, is taken from 
figure 2 (b )  of that paper where its reciprocal, K ,  is plotted against s. Initial conditions 
are required at the nozzle lip, s = 0; these are obtained as a result of preliminary 
calculations for a plane mixing layer and specified as those prevailing in a self- 
preserving flow of 3 mm thickness. The boundary conditions at the outer edge of 
the flow where the velocity is zero are simply that the pressure is equal to the atmos- 
pheric pressure and all the dependent variables are zero. At the high-velocity edge 
all the turbulence quantities are zero in the potential flow. The mean velocity, U, 
which is non-uniform at the edge of the solution domain, is required as a boundary 
condition for (11). The following approximate procedure is adopted: starting from an 
‘upstream ’ value of s at which all quantities are known, (13) is integrated across the 
laaver to determine the static pressure at  the high velocity edge. ‘Upstream’ values 
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(0 )  

I I I I 1 I 

s (cm) 

0 10 20 30 40 50 60 0 

s ( c d  
FIQTJRE 2. (a) Streamwise variation of the maximum mean velocity: -, calculated; 0, measure- 
ments by Castro (1973). ( b )  Variation of the curvature Richardson number along the centreline. 

of the streamwise pressure gradient are used to estimate the edge value of U a t  the 
downstream station. s + 6s. from 

integrated along a streamline. 
This fairly crude approximation can obviously be refined by, for example, successive 

iteration. Provided, however, that small forward steps in s are taken, the mean 
velocity in the potential flow is calculated to within 3%. Figure 2(a) shows the 
resulting streamwise variation of the maximum velocity which is chosen for this 
comparison because it is most readily identified in the experimental data; the nor- 
malizing velocity, Urel, is the mean velocity in the nozzle exit plane. The solution 
domain extends some distance into the potential flow where the mean velocity 
decreases with increafling radius of curvature. A further partial check on the 
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correctness of the method is provided by a comparison of the measured and calculated 
variation of the curvature Richardson number along the centreline which is plotted 
in figure 2 ( b ) .  This quantity is defined by: 

U 
2- 

in which r( N n + R) is the local streamline radius of curvature. Rf is interpreted as 
(minus) the ratio of 2 production (due to streamline curvature) to the total 2 pro- 
duction and it is analogous to the flux Richardson number of buoyant flow which is 
also defined as a ratio of energy production terms. Overall, the level of agreement 
shown in figure 2 justifies the approximate method for the pressure field and potential 
velocity. 

A computer code based on the Patankar & Spalding (1970) GENMIX boundary- 
layer program is used. Numerical instabilities, which have appeared in the calcu- 
lation of other complex flows (Launder & Morse 1979; Samaraweera 1978), and which 
necessitated the use of staggered grid arrangements, are entirely absent in this case. 
The forward step size, which for a plane flow and in the absence of strong longitudinal 
pressure gradients would be taken as about one tenth of the shear layer thickness, is 
limited by the procedure adopted to deal with (14). Approximately 700 forward steps 
are needed to obtain grid independent solutions and, with a cross-stream grid of 
thirty-three nodes, the computation time on a UNIVAC 1108 computer is approxi- 
mately 0-6 s per step. 

4. Comparison of model predictions with experiment 
The results of calculations are now compared with the measurements reported by 

CB. Some experimental data are also taken from Castro (1973) which contains details 
of the plane mixing layer only briefly mentioned in CB. That this simple flow be 
adequately predicted appeared to be an essential prerequisite for calculating the 
curved layer, but the usefulness of the plane mixing layer as a standard for turbulence- 
model performance is, however, limited by the very considerable spread in the data 
reported from various sources. In reviewing these data Rodi (1975) concluded that 
the measurements of Bradshaw et al. (1964) in the initial region of a round jet showed 
the best internal consistency and these have therefore been included in table 2 with 
Castro’s data and the results of the present calculations. 

The mixing-layer thickness, 8, is defined by CB as the distance between the points 
where ( P - p , ) / ~ U ~ , . ,  takes the values 0.81 and 0.0625. P is the total pressure, p ,  is 
the atmospheric pressure and qer is the jet velocity in the plane of the nozzle. For the 
plane-mixing layer, where the static pressure is negligibly different from p, ,  these 
definitions give U/U,,, = 0.9, 0-25. The centre-line is defined as the line UlU,,, = bI37. 

Tahle 2 shows that the predicted rate of growth of the self-preserving plane mixing 
layer is 11 % less than Castro’s measured value. The agreement between the measured 
and calculated velocity profiles, which are shown as the lowest pair of curves in 
figure 4, is somewhat less satisfactory. In fact, examination of the velocity profiles 
from different sources plotted hjr Rodi (1 975) shows t h a t  Castro’s results are :itvpical 
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- - - - - 
uv Zijc - - W2 - 212 - U2 - Pa - Source db' - 

dX V . 9 1  ULf u;ef C i  u:i v",l 
Bradshaw et a l .  ( 1  904) - 04570 0.0210 0.0170 0.0190 0-0100 0*0100 
Castro ( 1  973) 0.113 0.055? 0.0264 0.0131 0.0163 0.0085 0.0098 
Present calcdations 0.102 0.0542 0.0270 0.0136 0.0136 0.0096 - 

TABLE 2. Comparison of calculated and measured values of spreading rate and maximum values 
of turbulent energy and Reynolds stress in self-preserving mixing layers. ZEc is the value of ZE 
deduced from mcan-flow measurements. 

1 2  I 1 I I I I I I I I ,' 
Curved region , -. - 

10 - 

8 -  

h 

6 -  - 
v 

rg 

4 -  

- 

0 10 20 30 40 50 60 70 80 90 100 110 

s (cm) 

FIGCJRE 3. Calculated and incasured valucs of tlie shear-layer thickness plotted against distance 
8 measured along tlie centrolino: 0, cnrved-layer data; ---, plane-layer data; -, Reynolds- 
stress model; -.-, k-6 model. 

to  an extent that accounts almost entirely for the discrepancy in U on the low- 
velocity side and for some of that on the high-velocity side. Some discrepancy at  the 
high-velocity edge is not unexpected since it appears also in all previous calculations 
with turbulence models based on one or more transport equations. In this respect the 
present predictions differ only slightly from those of LRR and are close to a consensus 
of mean-field data. 

The turbulent energies and Reynolds stresses shown in table 2 are the maximum 
values normalized by the square of the mean velocity a t  the edge of the layer. The 
maximum value of is predicted to within 3 yo of the measurements and the levels 
of the three components appear to be about right, although a minor defect of the pres- 
sure-strain model is that it always produces 3 = 2 for a simple shear layer. The 
calculated shear stress is nearly equal to that measured by Bradshaw et al. and the 
values shown in the last column of table 2, which are obtained by Castro (1973) by 
substituting measured velocity distributions in the integral-momentum equation. 
The discrepancy between these and the directly-measured value led Castro to con- 
clude that the latter is probably too low by 15-20%. The shear stress obtained in 
the present calculations thus appears to be very nearly correct. 

Attention is now turned to the curved mixing layer. Figure 3 shows calculated and 
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I ll-0 

I I I I I I I I 

0 -1.0 -0.8 -0-6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

4 6  
FIQCJRE 4. Profiles of mean velocity at different streamwise locations: -, calculated; - - - -, 

faired curves through the measurements. Curves displaced upwards and to the right. 

measured values of the layer thickness, 6, plotted against distance s measured along 
the centre-line. The spreading rate dcY/ds falls to very low values around the region 
of maximum curvature (s z 33 cm) but recovers in the vertical portion of the flow 
downstream (s > 62 cm) t o  a value slightly greater than that of the plane layer. The 
calculated layer growth corresponds to the measurements; the main points of dif- 
ference are that the response to the extra strain and its removal is not quite as rapid 
as that measured. A further comparison made in figure 3 is with the layer growth 
calculated using a popular two-equation closure method? which gives good results 
for plane flow but does not adequately account for the effects of curvature. 

The calculated profiles of mean velocity agree rather better with the measurements 
than in the plane-flow case, as is shown in figure 4 where the measured profiles are 
taken from the contour plots provided in CB. On the low-velocity side the calculated 
profiles show the same trends as for the plane-mixing layer and the velocity is con- 
sistently overpredicted. On the high-velocity side, however, the agreement is im- 
proved. It will be recalled that the edge velocity is calculated by integrating the 
cross-stream momentum equation (13) across the layer; the graphs show the decrease 
in U from a maximum value to that at the edge of the solution domain some distance 
into the potential flow. 

In  the remaining figures the calculated and measured effects of curvature on 
turbulence quantities are compared. Attention has already been drawn to the over- 
shoot of plane-layer values which CB describe as the most striking feature of their 
results. Some overshoot appears also in the calculations; it is shown in figure 5 where 
the maximum values of 7 and ii5 are plotted against distance s measured along the 

t In the&-€ turbulence model, (Launder & Spalding 1974) transport equations are solved 
for k( 1 O@*) and E.  The shear stress is calculated from the gradient transport formula: 

-G = o*09;[(l+x)-&-x] au u 

and ciirvat.nre effect.s arc int,rodnced solely through t>he definition of P(  10). 
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centre-line. The model reproduces quite closely the sharp fall in intensity and sheer 
stress to minimum values close to the point of greatest curvature. The calculated 
recovery of is less rapid, and although the maximum value downstream exceeds 
that in a plane layer by 13 yo this is to be compared with a 35 yo measured overshoot. 
The calculated and measured overshoots in TiZ are in closer agreement at 18 and 25 yo 
respectively. The calculated turbulent-energy production rate in the recovery zone 
is less than that reported in CB and this may account - for some of the discrepancy in 
q 2  However, since the streamwise variation of ukax, shown in figure 6, is quite 
accurately predicted it seems probable that a low production rate is also associated 
with a low rate - of intercomponent transfer due to pressure strain. The calculated 
behaviour of vLaX (figure 6) appears to support this conjecture and the pressure-strain 
term in the shear-stress balance, shown in figure 9 and discussed below, is also under- - 
estimated. A feature of the measurements shown in figure 6 is that Zmax and vkax 
both fall to 59% of their plane-layer values. That 7 does not fall more than 2 is 
rather surprising since the direct effects of stabilizing curvature, expressed by the 
generation terms in the transport equations (1) and (2), are to augment and to 
depress 3. Accordingly in the calculations Zlax falls to 47% and zmax falls to as 
little as 36 yo of their plane-layer values. 

with the performance of the 
k - E model which is also shown in figure 5.  Here the streamwise variation of p i s  quite 
well predicted from the transport equation but the eddy-viscosity formulation fails 
badly to reproduce the observed fall in Z. 

- 

It is instructive to compare the results for UV and 
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FIQTJRE 7. Streamwise variation of the structure parameter mm/?mx. - , Reynolds-stress 
model; ---, k--E model; ----, rapid-distortion model (Townssnd 1980); 0, CB data. 

FIGURE 6. Streamwise variation of maximum values of the normal stresses: -, calculated; 
---- , measured values obtained from contour plots presented by Castro & Bradshaw (1976). 
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As a consequence the observed fall and recovery in the structure parameter 
is not predicted as is shown in figure 7.  In fact the use of the eddy-viscosity formula 
with a constant coefficient (0.09) implies an approximately constant value for GI?. 
The Reynolds-stress model does predict the fall of ZZ/? to the right level although it 
overshoots the measured values downstream due mainly to the underprediction of 
q2 discussed above. 

It is not easy to accept Townsend's (1980) view that the observed effects are 'not 
easily associated with source terms in the transport equation for Reynolds stress '. A 
local-equilibrium analysis (in which the source terms of table 1 are equated to zero) 
shows immediately that GI? is a strong function of the local curvature Richardson 

- 
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number?. Although Townsend (1980) fhds it surprising that El? should recover 
towards the plane-layer value before the curvature becomes negligible it is apparent 
from the modelled equations that this quantity must rise beyond the point of 
maximum curvature (at approximately 45') as Rf starts to fall. The local equilibrium 
approximation does in fact reproduce this behaviour with fair accuracy. Townsend's 
results for El? are also shown in figure 7 for comparison. 

Terms in the turbulent-energy equation and the iZ transport equation are com- 
pared with measured values on the centre-line in figures 8 and 9. Turbulent transport 
by pressure fluctuations was neglected by CB in processing the data and the main 
destruction term in the UU equation, the pressure-strain correlation, was obtained by 
difference. The 'out-of-balance' term plotted in figure 8(a) is attributed by CB to 
inaccuracy in the measurement of the dissipation rate, E ,  from frequency spectra and 
not to neglect of pressure transport. For clarity in making the comparisons mean- 
flow transport of zlv, which is very small, has been omitted from figure 9 and the 
shear-stress generation terms presented separately by CB have been combined. The 
measured behaviour of the terms plotted in figures 8 and 9 is discussed at some length 
by CB. This discussion need not be repeated and it is enough to note that the calculated 

t The result obtained by Gibson (1978) is 

where B(R,) is the eddy-visc0sit.y coefficient whoso value for plane flow is determined by the 
model aonFitant,s. 



178 M .  JI. Gibson and 11'. Rorli 

I I I I I I I I I I I 
0 

2.5 - - 

- 7.0 - 
h 

1.5 - 
v 

4 

1.0 - - 

- 

0 10 20 30 40 50 60 70 80 90 100 110 120 

s (cm) 
FIGURE 10. Variation of the dissipation length scale Ed/€ along the centreline. -, calculated; 

0, curved-layer data; - - - - , plane-layer data; -.-.-a- , L = L,(1+7Rf)-'. 

behaviour is in broad accord with that measured, the agreement being rather better 
in the energy balance than in the E-equation terms. CB ascribe the steep rise in 
and ZLV as the curvature decreases to a rapid increase in the rate of shear strain leading 
to increases in the production terms. The reason why the increase is prolonged is 
attributed by CB to the suppression of turbulent transport which permits an unusual 
increase in turbulent energy in the central part of the layer. Figure 8(b)  shows that 
the calculated increase in turbulent diffusion in the region of decreasing curvature is 
smaller than that measured and it might therefore be expected that the calculated 
rise and overshoot of? would exceed the measured values. In the calculated balance, 
however, the sluggish response of the triple correlations approximated by (8) is more 
than offset by a less rapid rise in energy production. 

A feature of the results is that the turbulent-energy dissipation rate obtained from 
the modelled transport equation (9) corresponds fairly closely to the measured values, 
even when the out-of-balance term in the measurements is taken into account. The 
€-equation is widely used in turbulence modelling but, while it produces acceptable 
results for many simple shear flows, its performance in more complex flows has 
recently been questioned (Launder & Morse 1979; Hanjalic & Launder 1979). For 
the curved shear layer the basic form originally proposed by Hanjalic & Launder 
(1972) appears to be quite adequate, with the single (logical) change that turbulent 
energy production due to mean shear in a simple flow is replaced by the total (shear 
plus curvature) production. 

Figure 10 shows measured and calculated values of the dissipation length scale 
L E G g l e  on the centre-line. The calculated variation of L with s shows a minimum 
of about the right value at  s = 36 cm but the steep measured rise and overshoot of 
plane-layer values is not recovered. The main reason for the discrepancy is the slow 
calculated response of UV to the reduction in curvature, although high calculated 
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values of B downstream also contribute. CB comment that the curvature is changing 
too rapidly for validity of a ‘Monin-Obukhov’ linear correction factor of the form: 

L/Lo = (1 + /3Rf)-’, (16) 

where p is a constant (Bradshaw 1969). The calculated values cannot be fitted by (16) 
either, although the difference is not as great as that measured. The length scale 
variation obtained from (16) with /3 = 7 is plotted in figure 10 for comparison. We 
have verified that the use of (16) in place of the E equation (9) does in fact produce an 
overshoot in turbulence quantities although the overall level of agreement with the 
measurements is poorer. It appears then that the ability to predict this feature 
depends not on the use of a length scale equation or its equivalent, but is a consequence 
of the characteristics of the other transport equations. Smits et al. (1979) have arrived 
at the same conclusion by using a crude stress transport model to show that the re- 
sponse of a turbulent shear layer to a perturbation is a damped oscillatory variation 
in a U / h  and G. Townsend (1980), appealing to rapid-distortion theory, also inter- 
prets the shear-stress behaviour as being the consequence of damped inertial waves 
that can propagate in flows with stabilizing curvature. CB report similar behaviour 
of the length scale L, = (?)ale which is not recovered at all in the calculations. The 
only effect of curvature on the calculated values of L, is slightly to diminish its rate 
of increase with s. The variation is not, however, simply related to the layer thickness 
or to the local values of Rf. 

5. Concluding remarks 
The present study has demonstrated that a calculation method based on the 

Reynolds-stress equations reproduces the main features of a turbulent shear layer 
subjected to strong stabilizing curvature. These consist of the reduction in growth 
rate relative to a plane flow, the suppression of turbulent intensity and shear stress in 
the highly-curved region, the subsequent recovery to, and overshoot of, plane-layer 
values downstream of the curved zone. The availability of very detailed turbulence 
measurements has made possible comparisons that are seldom attempted in model 
studies of this type, including such details as the balances of turbulent energy and 
shear stress. 

The Reynolds-stress model is one which had previously been developed for plane 
flow. The effects of strong curvature are predicted without modification to the basic 
closure hypotheses, or changes in the model constants whose values me established 
in advance by reference to experimental data from simple shear layers. In the interests 
of retaining a model which, it is hoped, will be generally applicable to practical flow 
calculation, no attempt has been made to ‘tune’ the model constants for optimum 
agreement with either plane or curved mixing-layer measurements. The predictions 
compare favourably with results obtained from a ‘ standard ’ unmodified lower-order 
model in which empirical curvature corrections are certainly needed to achieve the 
same level of agreement with the measurements. 

In  his paper describing rapid-distortion calculations for this flow, which result in 
the streamwise variation of UV/? reproduced in figure 7, Townsend (1  980) suggests 
that calculation schemes based on the Reynolds-stress equations cannot give correct8 
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results. The present work does not support Townsends views and a short discussion 
of the two approaches is appropriate. 

The Reynolds-stress equations are exact and, while it is necessary to model certain 
terms to close the equation set, the closure approximations used are based on physical 
reasoning and satisfy symmetry and continuity conditions. The model for the 
pressure-strain correlation is the central feature of the closure scheme. This quantity 
is decomposed into two parts which are modelled separately. The model for the mean- 
strain, or ‘rapid’, part is not incompatible with rapid-distortion theory and indeed 
the two methods reduce to the same exact result for the case of initially isotropic 
turbulence subjected to weak distortion. The treatment differs from that advocated 
by Townsend in that the local mean strain (aU/an- UIR) is used throughout rather 
than an ‘effective total strain’. 

In  the CB flow the change in distortion over distances comparable with the integral 
scale is slight enough to permit the local strain to be used in the Reynolds-stress 
model. The history of the flow, and thus also the history of the strain, is accounted 
for by the transport terms in the equations albeit not in the model for the mean-strain 
part of the pressure-strain correlation. It is, perhaps, worth emphasizing again that 
the Reynolds-stress closure is complete and that the method gives absolute values of 
turbulence quantities which are required for the simultaneous calculation of the 
mean-flow field. 

In  its current form the rapid-distortion model is restricted to the prediction of 
stress ratios in flows where the mean-flow details are supplied rather than predicted. 
If it  were to form part of a calculation scheme at least one additional equation would 
be needed to determine intensities. The method is based on a local linearization of the 
equations of motion. The interaction of large stable eddies with mean-flow gradients 
is modelled while the nonlinear interactions with other eddies are assumed to be 
weak. In  relation to the terms of the exact Reynolds-stress equations the method 
implies neglect of turbulent transport (triple correlations), the turbulence part of 
pressure strain and the energy-dissipation rate?. Consequently the rapid-distortion 
theory is strictly applicable only when the turbulence is weak and the distortion time 
is small compared to a characteristic decay time for the turbulence. Since, however, 
only the stress ratios are calculated the restriction is not too severe. The shear-stress 
transport equation in particular is dominated by the mean-flow distortion terms and 
equivalent results can be obtained from a local-equilibrium approximation to the 
full equations. In any case it appears that the assumptions made for each model are 
not seriously violated, that is, the distortion is neither extremely rapid nor very slow. 
There seems to be no insuperable difficulty involved in reconciling the essential 
features of both methods. Such an approach, which has already been suggested by 
Hunt (1978), might well afford the best prospect for development of a generally 
applicable calculation method for complex flows. 
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